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Abstract

Linear models appear in many recent color constancy theo-
ries; however, they can play two quite different roles. They
may either occur as a direct component of the computa-
tional strategy, as in the case of the Maloney-Wandell al-
gorithm; or they may appear as necessary part of the theo-
retical development, but not as part of the computation
perse, as in the case of algorithms based on spectral sharpen-
ing (Finlayson, Drew, Funt). This paper surveys recent work
in color constancy and concludes that in many circumstances
the second role may be more appropriate than the first.

Introduction

For us to build machines that reproduce colors accurately
or to make effective use of color in robotics requires that
we understand human color perception; and the last de-
cade has produced many interesting new computational
theories of color coming from both computer science and
psychology. A central concern of these theories is to de-
scribe how color depends or does not depend on the inci-
dent illumination. A colored surface cannot be seen unless
we shine some light on it, but then the spectrum of the re-
flected light depends on the product of the spectrum of the
incident light’s spectrum and the surface’s reflectance. Since
the spectrum of the light energy reaching the eye has the
two factors of illumination and reflectance confounded into
one the effect of the illumination must be taken into ac-
count in order to determine the true surface properties.

When light of spectral power distribution (spectrum
for short) E(λ) reflects off a matte surface of percent sur-
face spectral reflectance (reflectance for short) S(λ) it pro-
duces a color signal C(λ),

C(λ ) = E(λ ) ⋅ S(λ ) (1)

where the product is formed by multiplication on a wave-
length-by-wavelength basis over the visible wavelength
range of 400-700 nanometers. Each channel of spectral sen-
sitivity Rk(λ) (k=1...3)

      ρk = ( ) ( )C R d
visible kλ λ λ∫ ⋅  (2)

Since the visual system at any given location in the
visual field makes only 3 measurements of the full color
signal, there is a substantial amount of data reduction and
possible data loss involved in Equation 2. In contrast, even
a coarse 10nm sampling of the spectrum over the 400-
700nm range results in 31 measurements. If the illumina-
tion E(λ) were known and the incoming color signal C(λ)

were measured in full, then equation (1) could be directly
solved for the surface reflectance properties S(λ). How-
ever, the visual system clearly faces a difficult problem in
recovering any reliable illumination-independent informa-
tion about S(λ) since E(λ) is unknown and C(λ) is so crudely
reduced to only 3 values.

Computational Color Constancy

The various computational color constancy algorithms can
be divided along the dimensions: statistical assumptions
about the distribution of surface colors, assumptions about
reflectances and illuminants, image gamut assumptions,
peeking methods, requirements about multiple illuminants,
and inclusion or discovery of known surfaces. Statistical
assumptions about scenes include a variety of grey-world
assumptions, for example that averaged over the entire scene
the surface reflectance is grey or that it matches some other
known average reflectance3,17 or that somewhere in every
scene will be found a surface patch that maximally stimu-
lates each of the long, medium and short wave sensors
(retinex with reset).22 Brainard and Freeman1 assume that
the scene’s illumination and reflectance spectra are drawn
from known probability distributions. All of these methods
work well when the statistical assumptions are met but can
easily be made to fail by designing reasonable scenes in
which the assumptions are not met.

The ‘peeking’ methods involve some method of ob-
taining an indirect glimpse of the illumination. For example,
specularities usually reflect the incident illumination un-
changed and since the specular component will be com-
mon to surfaces of different color it is possible27,23 to ex-
tract it. Similarly, light interreflected between two surfaces
shares a common component due to the incident illumina-
tion and so the incident illumination can be calculated14.
Both the specularity and interreflection methods are vul-
nerable to scenes in which there are multiple sources of
illumination. While a problem for these methods, multiple
sources can also lead to further information if it can be
determined that the same surface is being viewed under 2
or more illumination conditions. This information has been
exploited to obtain surface shape30,26 and for color con-
stancy10,5 Collections of surfaces of known reflectance have
been used in volumetric color constancy2 or supervised color
constancy25 to solve for the illumination. Recent meth-
ods16,18 of color-based object recognition, that do not re-
quire color constancy à priori can be used to find such col-
lections of surfaces from which the illumination properties
can then be estimated.

Forsyth12 introduced the idea of a canonical gamut of
colors as a constraint for color constancy. A large set of
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surfaces is examined under some standard illumination con-
dition called the canonical illuminant and the set of all ρk
sensor responses (i.e. ‘colors’) that arise is tallied. The 3D
convex hull of this set then defines the canonical gamut,
which is intended to represent the complete set of sensor
responses that could arise under the canonical illuminant.
When a different collection of surfaces is viewed under
some unknown illuminant, the convex hull of that
collection’s sensor responses is obtained and compared to
the canonical gamut. To the extent that this collection of
surfaces is a representative one, the differences between
the observed gamut and the canonical gamut will be due to
the differences in the illuminations. Comparing the gamuts
is not as simple as finding the mapping that transforms one
gamut into another, but intuitively it is somewhat like that.
The actual process involves taking each hull point of the
canonical gamut and calculating the set of mappings pro-
jecting it into the observed gamut. The intersection of all
the possible mappings for all the canonical hull points de-
fines the possibilities as to what the unknown illumination
might be.

Finite-Dimensional Linear Models

Assumptions about reflectances and illuminants can be ex-
pressed in terms of the dimension of the linear models re-
quired to approximate them accurately. In general, solving
for color constancy is a very underconstrained problem and
even approximate solutions might be impossible were it
not for the fact that the spectra of lights and reflectances
appear to be quite constrained. These constraints are cap-
tured by finite-dimensional linear models which are used
in many recent color constancy theories17,24,19.

Statistical analyses done using principal component
analysis of databases of reflectances and illuminations4,20

have shown that there is a great deal of correlation between
the power at different wavelengths in these spectra. This
means that they can be described well by a smaller number
of parameters than used to describe the data originally (e.g.
31). Surprisingly, as few as 3 parameters do quite well for
daylight illuminations and         4-6 do well for reflectances.
Illumination spectra are approximated as a linearly weighted
sum of the first n  basis spectra obtained via the principal
component analysis:

E(λ ) ≈ ε i Ei (λ )
i

n

∑ (3)

A similar equation holds for reflectances. Reducing the
number of parameters in this way of course helps in terms
of data reduction, but more importantly it means that the
number of unknowns to solve for drops to the point where
it may match the number of knowns which at most is 3 per
image location.

One very interesting theory that exploits the reduction
in unknowns is that of Maloney and Wandell24 They as-
sume, albeit somewhat unrealistically, that reflectances can
be reasonably represented using only 2 parameters. Under
this assumption, and because of the linearity found in Equa-
tion 2, the set of sensor responses obtained from a collec-
tion of differently colored surfaces under a single illuminant
must fall on a plane in color space. Color space is the 3-
dimensional space defined by the set of sensor responses

ρk (k=1...3). In the Maloney-Wandell theory, the illumina-
tion defines the orientation of the plane spanned by the sen-
sor responses found in the image so that the illumination
can be determined by fitting a plane to the data and solving
for its orientation.

3-Parameter Models

A particularly appealing feature of low-dimensional mod-
els for spectra and reflectances is that information about
the entire function is encoded in a few parameters. There
may well be situations in which we need to deal with the
full spectrum, but it is far from clear that color requires the
full spectrum. A trichromatic system condenses the spec-
trum to 3 values and we know from color matching experi-
ments that 3 primaries suffice for color mixing.

Both the Maloney-Wandell and Forsyth theories can
be simplified to a certain extent by a technique we call spec-
tral sharpening.6 Spectral sharpening creates a new set of
sensor sensitivity functions through a fixed, linear combi-
nation of the original sensor sensitivity functions Rk(λ). The
sharpened sensors are generally more narrowband than the
original sensors and this means that adjustments for changes
in the illumination can be modeled accurately by simply
scaling the responses of each sensor independently.

Scaling the sensor responses independently corre-
sponds to a von Kries type method of adaptation. It also equates
to transforming the triple of sensor reposes by a diagonal
matrix in order to model a shift in the spectrum of the illu-
mination. In the past this scaling or diagonal transforma-
tion has been applied directly to the cone responses. Even
worse it has been applied to the CIE XYZ coordinates as in
the case of the CIELAB. The accuracy with which a diago-
nal transform models illumination change depends very
much upon the coordinate system in which it is performed.
Spectral sharpening finds the optimal coordinate system.
Several definitions of optimality have been tried which all
lead to quite similar sets of sharpened sensors.

Extensive testing using typical illuminants and
reflectances has shown that the simple 3-parameter, diago-
nal scaling model performs very nearly as well as a full 9-
parameter linear transformation in mapping between the
two sets of sensor responses obtained from a single surface
under two different illuminants. In addition, it works ap-
proximately as well (occasionally slightly better, occasion-
ally slightly worse) as when 3-dimensional linear models
are used to model the full spectra of the illuminants. In
other words, even when the spectra of the two illuminants
and the sensor response created under the first illuminant
are given, a 3-dimensional model of illumination is in
general no more effective in predicting what the sensor
response will be under the second illuminant than a 3-pa-
rameter di-  agonal scaling model applied to the sharpened
sensor responses.

For the case in which illumination is modelled per-
fectly by a 3-dimensional linear model and reflectance per-
fectly by a 2-dimensional model, we prove that a diagonal
model completely accounts for any illumination change7.
The requirements of 3D illumination and 2D reflectance
are exactly those imposed by the Maloney-Wandell algo-
rithm in order for it to work perfectly. As a result the
Maloney-Wandell theory which was initially formulated in
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terms of finite-dimensional linear models, can be re-stated
in terms of a simple diagonal, von-Kries-like, direct scal-
ing of sharpened sensors.

This result is both surprising and, in a way, to be
expected: surprising in the sense that finite-dimensional
models appear at the core of the algorithm; expected in
that, as Brian Wandell29 argues, the algorithm always did
rely on exactly 3-parameters in describing illumin-
ationnamely, the coefficients of the 3-dimensional lin-
ear modelso the diagonal model offers simply a dif-
ferent set of 3 parameters.

Using finite-dimensional models Healey et. al18 de-
velop an interesting algorithm for illumination-invariant
object recognition. They show that for illuminations that
are 3-dimensional, a change in illumination causes a simple
linear transformation in their texture measure which can
then be factored out. As in the case of the Maloney-Wandell
algorithm, we show11 that their texture algorithm can be
simplified by reformulating it in terms of 3-parameter di-
agonal transformations applied to spectrally sharpened sen-
sor responses.

Sharpened sensors can be used also in the Forsyth
theory so that it is both simplified8 and so that constraints
on the gamut of possible illuminations10 can be incorpo-
rated in addition to the constraints on the gamut of surface
reflectances. Although retinex22 is not formulated in terms
of finite-dimensional models, its calculations will also dis-
count the illuminant more effectively when performed in
sharpened sensor space.

I believe that other theories that depend on 3-dimen-
sional linear models such as Gershon’s17 and Brainard and
Freeman’s1 can be similarly recast in terms of diagonal
transformations, but have not as yet done so. That some
theories can be recast in terms of diagonal transformations
is not in any way intented as a criticism of those theories
(and if it were it would apply equally to the several situa-
tions14,19,13 in which I have used 3-dimensional linear mod-
els) but rather as evidence for the effectiveness of spectral
sharpening.

Conclusion

Finite-dimensional models have played an important role
in the development of recent color theories, but in hind-
sight they are perhaps not really needed. Color is adequately
described by a 3-dimensional coordinate system. The per-
ceived need for finite-dimensional models stemmed more
from the lack of a good basis for the color coordinate sys-
tem than a need actually to represent full spectra. With the
exception of circumstances in which linear models of di-
mension 4 or greater are used (e.g. as in computer graph-
ics9) in general for the common 3-dimensional case, once
the cone responses are converted to the new sharpened sen-
sor basis many color manipulations can be performed in
the new basis without recourse to finite-dimensional de-
scriptions of the underlying spectra.
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